The use of clamping grips and friction pads by tree frogs for climbing curved surfaces
نویسندگان
چکیده
Most studies on the adhesive mechanisms of climbing animals have addressed attachment against flat surfaces, yet many animals can climb highly curved surfaces, like twigs and small branches. Here we investigated whether tree frogs use a clamping grip by recording the ground reaction forces on a cylindrical object with either a smooth or anti-adhesive, rough surface. Furthermore, we measured the contact area of fore and hindlimbs against differently sized transparent cylinders and the forces of individual pads and subarticular tubercles in restrained animals. Our study revealed that frogs use friction and normal forces of roughly a similar magnitude for holding on to cylindrical objects. When challenged with climbing a non-adhesive surface, the compressive forces between opposite legs nearly doubled, indicating a stronger clamping grip. In contrast to climbing flat surfaces, frogs increased the contact area on all limbs by engaging not just adhesive pads but also subarticular tubercles on curved surfaces. Our force measurements showed that tubercles can withstand larger shear stresses than pads. SEM images of tubercles revealed a similar structure to that of toe pads including the presence of nanopillars, though channels surrounding epithelial cells were less pronounced. The tubercles' smaller size, proximal location on the toes and shallow cells make them probably less prone to buckling and thus ideal for gripping curved surfaces.
منابع مشابه
Self-cleaning in tree frog toe pads; a mechanism for recovering from contamination without the need for grooming.
Tree frogs use adhesive toe pads for climbing on a variety of surfaces. They rely on wet adhesion, which is aided by the secretion of mucus. In nature, the pads will undoubtedly get contaminated regularly through usage, but appear to maintain their stickiness over time. Here, we show in two experiments that the toe pads of White's tree frogs (Litoria caerulea) quickly recover from contamination...
متن کاملSticking like sticky tape: tree frogs use friction forces to enhance attachment on overhanging surfaces.
To live and clamber about in an arboreal habitat, tree frogs have evolved adhesive pads on their toes. In addition, they often have long and slender legs to facilitate not only long jumps, but also to bridge gaps between leaves when climbing. Both adhesive pads and long limbs are used in conjunction, as we will show in this study. Previous research has shown that tree frogs change from a crouch...
متن کاملBioinspired, peg-studded hexagonal patterns for wetting and friction.
Inspired by peg-studded hexagonal epidermal cells found in biological pad interfaces, biomimic hierarchical surface patterns with different degrees of wettability were fabricated using a new method involving photolithography and wet etching. In order to understand the effects of the peg-studded structures on wettability and frictional properties, varying patterns were studied and compared. Expe...
متن کاملMorphological studies of the toe pads of the rock frog, Staurois parvus (family: Ranidae) and their relevance to the development of new biomimetically inspired reversible adhesives.
The morphology of the toe epithelium of the rock frog, Staurois parvus (Family Ranidae), was investigated using a variety of microscopical techniques. The toe pad epithelium is stratified (four to five cell layers), the apical parts of the cells of the outermost layer being separated by fluid-filled channels. The surface of these cells is covered by a dense array of nanopillars, which also cove...
متن کاملTarantulas (Araneae: Theraphosidae) use different adhesive pads complementarily during climbing on smooth surfaces: experimental approach in eight arboreal and burrower species
Tarantulas are large spiders with adhesive setae on their legs, which enable them to climb on smooth vertical surfaces. The mechanism proposed to explain adhesion in tarantulas is anisotropic friction, where friction is higher when the leg pushes than when it pulls. However, previous studies and measurements of adhesion in theraphosids were performed using dead specimens. To test their ability ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 284 شماره
صفحات -
تاریخ انتشار 2017